The Earth’s gravity revealed

After just two years in orbit, ESA’s GOCE satellite has gathered enough data to map Earth’s gravity with unrivalled precision. Scientists now have access to the most accurate model of the ‘geoid’ ever produced to further our understanding of how Earth works.

The new geoid was unveiled today at the Fourth International GOCE User Workshop hosted at the Technische Universität München in Munich, Germany. Media representatives and scientists from around the world have been treated to the best view yet of global gravity.

The geoid is the surface of an ideal global ocean in the absence of tides and currents, shaped only by gravity. It is a crucial reference for measuring ocean circulation, sea-level change and ice dynamics – all affected by climate change.

Prof. Reiner Rummel, former Head of the Institute for Astronomical and Physical Geodesy at the Technische Universität München, said, “We see a continuous stream of excellent GOCE gradiometry data coming in. With each new two-month cycle, our GOCE gravity field model is getting better and better.  

Understanding ocean circulation
To understand ocean circulation

“Now the time has come to use GOCE data for science and applications. I am particularly excited about the first oceanographic results.

“They show that GOCE will give us dynamic topography and circulation patterns of the oceans with unprecedented quality and resolution. I am confident that these results will help improve our understanding of the dynamics of world oceans.”

The two-day workshop provides the science community with the latest information on the performance of the satellite and details about data products and user services.

New GOCE geoid
New GOCE geoid

Participants are also discussing how the GOCE geoid will make advances in ocean and climate studies, and improve our understanding of Earth’s internal structure.

For example, the gravity data from GOCE are helping to develop a deeper knowledge of the processes that cause earthquakes, such as the event that recently devastated Japan.

Since this earthquake was caused by tectonic plate movement under the ocean, the motion cannot be observed directly from space. However, earthquakes create signatures in gravity data, which could be used to understand the processes leading to these natural disasters and ultimately help to predict them.

The GOCE satellite was launched in March 2009 and has now collected more than 12-months of gravity data.

GOCE in orbit
GOCE in orbit

Volker Liebig, Director of ESA’s Earth Observation Programmes said, “Benefiting from a period of exceptional low solar activity, GOCE has been able to stay in low orbit and achieve coverage six weeks ahead of schedule.

“This also means that we still have fuel to continue measuring gravity until the end of 2012, thereby doubling the life of the mission and adding even more precision to the GOCE geoid.”

GOCE has achieved many firsts in Earth observation. Its gradiometer – six highly sensitive accelerometers measuring gravity in 3D – is the first in space.

It orbits at the lowest altitude of any observation satellite to gather the best data on Earth’s gravity. The design of this sleek one-tonne satellite is unique.

In addition, GOCE uses an innovative ion engine that generates tiny forces to compensate for any drag the satellite experiences as it orbits through the remnants of Earth’s atmosphere.

Prof. Liebig added, “You could say that, at its early conception, GOCE was more like science fiction. GOCE has now clearly demonstrated that it is a state-of-the-art mission.”

Rune Floberghagen, ESA’s GOCE Mission Manager, noted “This is a highly significant step for the mission. We now look forward to the coming months, when additional data will add to the accuracy of the GOCE geoid, further benefiting our data users.”


New NASA Data Blow Gaping Hole In Global Warming Alarmism

NASA satellite data from the years 2000 through 2011 show the Earth’s atmosphere is allowing far more heat to be released into space than alarmist computer models have predicted, reports a new study in the peer-reviewed science journal Remote Sensing. The study indicates far less future global warming will occur than United Nations computer models have predicted, and supports prior studies indicating increases in atmospheric carbon dioxide trap far less heat than alarmists have claimed.
Study co-author Dr. Roy Spencer, a principal research scientist at the University of Alabama in Huntsville and U.S. Science Team Leader for the Advanced Microwave Scanning Radiometer flying on NASA’s Aqua satellite, reports that real-world data from NASA’s Terra satellite contradict multiple assumptions fed into alarmist computer models.
“The satellite observations suggest there is much more energy lost to space during and after warming than the climate models show,” Spencer said in a July 26 University of Alabama press release. “There is a huge discrepancy between the data and the forecasts that is especially big over the oceans.”
In addition to finding that far less heat is being trapped than alarmist computer models have predicted, the NASA satellite data show the atmosphere begins shedding heat into space long before United Nations computer models predicted.
The new findings are extremely important and should dramatically alter the global warming debate.
Scientists on all sides of the global warming debate are in general agreement about how much heat is being directly trapped by human emissions of carbon dioxide (the answer is “not much”). However, the single most important issue in the global warming debate is whether carbon dioxide emissions will indirectly trap far more heat by causing large increases in atmospheric humidity and cirrus clouds. Alarmist computer models assume human carbon dioxide emissions indirectly cause substantial increases in atmospheric humidity and cirrus clouds (each of which are very effective at trapping heat), but real-world data have long shown that carbon dioxide emissions are not causing as much atmospheric humidity and cirrus clouds as the alarmist computer models have predicted.
The new NASA Terra satellite data are consistent with long-term NOAA and NASA data indicating atmospheric humidity and cirrus clouds are not increasing in the manner predicted by alarmist computer models. The Terra satellite data also support data collected by NASA’s ERBS satellite showing far more longwave radiation (and thus, heat) escaped into space between 1985 and 1999 than alarmist computer models had predicted. Together, the NASA ERBS and Terra satellite data show that for 25 years and counting, carbon dioxide emissions have directly and indirectly trapped far less heat than alarmist computer models have predicted.
In short, the central premise of alarmist global warming theory is that carbon dioxide emissions should be directly and indirectly trapping a certain amount of heat in the earth’s atmosphere and preventing it from escaping into space. Real-world measurements, however, show far less heat is being trapped in the earth’s atmosphere than the alarmist computer models predict, and far more heat is escaping into space than the alarmist computer models predict.
When objective NASA satellite data, reported in a peer-reviewed scientific journal, show a “huge discrepancy” between alarmist climate models and real-world facts, climate scientists, the media and our elected officials would be wise to take notice. Whether or not they do so will tell us a great deal about how honest the purveyors of global warming alarmism truly are.
James M. Taylor is senior fellow for environment policy at The Heartland Institute and managing editor of Environment & Climate News.

Can the Earth’s Wandering Magnetic Poles Cause Deadly Superstorms?

The Earth’s magnetic poles have started moving at an increased rate in recent years. Some fear a catastrophic pole flip. Most scientists don’t seem worried. 

(FOX News)- Will the wandering magnetic North Pole create crazy superstorms?
The eye-popping connection between the planet’s weather and itsmagnetic field has caught hold among scaremongers recently, ever since scientists described the potential of devastating “superstorms” — storms caused, scientists say, by flowing gushers of water in the sky known as atmospheric rivers. Some worriers say that these tubocharged tsunamis will soon be widespread, thanks to the increased movement of the Earth’s magnetic field. 
And that when the field shifts, the story goes, anything can happen. All hell will break loose, they say, arguing that the shift has a greater effect on the world’s weather than even the carbon-based influences scientists have been carefully monitoring.
Poppycock, say the best scientific minds in the Northern Hemisphere.
“Trying to link all of these things together is kind of preposterous,” said Dr. Carol Raymond, principal scientist and a geophysicist with NASA’s Jet Propulsion Lab, which operates a fleet of satellites that closely monitor the planet and leads the charge in Earth Science research. Read more here.

Thermogeddon: When the Earth gets too hot for humans

Thermogeddon: When the Earth gets too hot for humans.

According to a recent study, parts of the Earth could start to become uninhabitable within a century. Surely it cannot be true?

IT IS the late 23rd century. Houston, Tel Aviv, Shanghai and many other once-bustling cities are ghost towns. No one lives in Louisiana or Florida anymore, and vast swathes of Africa, China, Brazil, India and Australia are no-go zones, too. That’s because in all of these places it gets hot and humid enough to kill anyone who cannot find an air-conditioned shelter.

NASA and Mary J. Blige partnership

Mary J. Blige is partnering with NASA with the objective to encourage girls and women of all ages to take up careers in science. Cited in a recent article.

NASA released two public service announcements featuring Blige and space shuttle astronaut Leland Melvin this week on NASA TV online. In addition, Blige, who cofounded the Foundation for the Advancement of Women Now in 2008, has made several television appearances in the last week to talk about the program.

The goal of the collaboration is to gather attention for NASA’s Summer of Innovation, a multiweek, intensive STEM program for middle school teachers and students during summer 2010. Coordinators hope the program, which is in support of the US President Barack Obama’s Educate to Innovate Campaign, will counter the “summer slide” (loss of academic skills over the summer) and other issues facing students who are underrepresented, underserved, and underperforming in STEM. SOI programs will take place in several states in the US including Idaho, Massachusetts, New Mexico and Wyoming, and students will learn about and develop projects involving wind turbines, weather stations, engineering in suborbital space, robotics, astrophysics, and space exploration. This, oneday should be made a global initiative!

The are a few things parents, teachers and society can do to encourage girls to pursue an interest in science.

Expose them to female role models. Find other women in science who can tell  them, what they did in science when they were young girls.

Use role models who can demonstrate that you can be attractive, wear nice clothes, have children, and get married–all while being successful in science. “That may sound a little bit sexist, but it turns out this is what little girls think about early on, and even the young girls you meet today in schools across the world [think you can’t be involved in science and still be feminine],” Quote “If you can expose them to role models who have these characteristics, it is positive reinforcement for them.”

Relate science to activities that girls, in particular, will understand. Tell and teach them about the chemistry involved in cosmetology or the scientific processes involved in cooking. There is an entire discipline of science devoted to food science. Show them that bread is made from yeast rising, that pickles are made as a result of the fermentation process, and explain to them the role of microorganisms in yogurt and cheeses. “Explain science so that children can see how it is used in their everyday experiences. Then it will help them to be more engaged and empower them.”

Build their math skills early. “Make sure they have a good foundation in math because math is fundamental to science,” If they have a good background in math, science will come easy.”